skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Castello, Leandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fish migrate for varied reasons, including to avoid predators and to access feeding, spawning, and nursery habitats, behaviors that enhance their survival and reproductive rates. However, the migratory ecology of many important fishes, especially those in river–floodplain ecosystems, remains poorly understood. One fish of the Amazon Basin whose migratory behavior is poorly understood is the catfish Pseudoplatystoma fasciatum. Here, we used otolith elemental microchemistry to characterize the migration ecology of P. fasciatum in the Amazon Basin. The main research questions of this study were: (1) does P. fasciatum move between waters with different Sr isotopic signatures (87Sr/86Sr) and chemical compositions? (2) What distance do they migrate? (3) Is the migration of P. fasciatum related to age? And (4) does P. fasciatum migrate mainly upstream, downstream, or in both directions? We assessed whether P. fasciatum migrates between waters with different 87Sr/86Sr values, comparing the Sr isotopic signature of otolith transects of each individual with the range of Sr isotopic signatures within the respective rivers. We found that 34% of the 71 fish analyzed migrated between rivers with different Sr isotopic signatures and 66% did not. The mean migration distance migrated was 126 km, with most specimens migrating between 72 and 237 km. Apparently, no fish of age one or age six or older migrated. All fish that migrated were between two and five years of age, with 20% of the specimens that migrated being two years old, 40% three years old, 30% four years old, and 20% five years old. Sixty-six percent of all individuals that migrated between rivers with different Sr signatures did so bidirectionally, while 33% moved unidirectionally. According to our definition of homing behavior in which fish migrated back to the same river where they were born, 41% of all fish that migrated displayed apparent homing behavior. Our findings provide insights into the migratory ecology of P. fasciatum, corroborating and refining knowledge reported in the literature. Our results on the migratory ecology of P. fasciatum have implications for sustainable fisheries conservation and management: conserving P. fasciatum requires habitat maintenance and suitable fishing practices in spawning and nursery habitats, and managers must consider large geographic areas for effective fishery management and conservation. 
    more » « less
  2. Fish growth is a fundamental biological process driven by a multitude of intrinsic (within-individual) and extrinsic (environmental) factors that underpin individual fitness and population dynamics. Interannual variability in river hydrology regarding the intensity and duration of floods and droughts can induce interannual variations in the biotic and abiotic variables that regulate fish growth. However, the understanding of how interannual variability in river hydrology affects fish growth remains limited for most species and ecosystems. We evaluated how inter-annual hydrological variations within the Amazon River basin influence the growth of the catfish Pseudoplaystoma fasciatum. Our research questions were as follows: Do floods lead to the faster growth of P. fasciatum and droughts lead to the slower growth? And do floods and droughts affect all age classes in the same manner? We sampled 364 specimens of P. fasciatum from five sites in the Amazon basin, estimated their growth rates, and related the growth rates to indices of the intensity of floods and droughts. We fitted linear mixed-effects models to test the relationship between growth increments and hydrological indices (with F and D quantifying the intensities of floods and droughts, respectively), age as fixed effects, and basins and Fish ID as random effects. We found an inverse relationship between the increment width in the fish hard parts and hydrological indices. That is, intense floods and droughts negatively affected the growth rates. We also found that the growth of P. fasciatum was no different in years with intense and mild floods across age classes 1–5, although was different for age class 6. However, the growth of P. fasciatum was faster in years of mild droughts for all age classes. Our results showing that the growth of P. fasciatum was slower in years of intense droughts are supported by those of previous studies in the Amazon basin and elsewhere. However, our results showing for the first time that the growth of P. fasciatum is slower in years of intense flooding is the opposite of patterns found in other studies. These results thus suggest that the growth of P. fasciatum is maximized within an optimum range of hydrological conditions, where neither floods nor droughts are intense. 
    more » « less
  3. Free, publicly-accessible full text available April 1, 2026
  4. Species of the genus Pseudoplatystoma, the long-whiskered catfishes, are important in commercial and recreational fisheries in South America, and some species have become key to regional aquaculture. Some species of the genus are under pressure due to overfishing and the negative impacts of dams. Six questions are asked in this review: (i) What species are in the genus, and where are they distributed? (ii) What are the life histories and ecologies of Pseudoplatystoma species? (iii) What are the patterns of somatic growth for these species? (iv) What is known about the biomass, production, and population dynamics of Pseudoplatystoma? (v) What is the geographic distribution of genetic variation within Pseudoplatystoma species? (vi) What are the threats to the conservation of these species? The taxonomy of the genus currently includes eight species, respectively, distributed over the Orinoco, Amazon, Paraná, and São Francisco basins. Pseudoplatystoma catfishes typically exhibit longitudinal migrations for reproduction and lateral migration for feeding, but these patterns may vary among populations. The size of the first maturation of these catfishes varies between 57 cm to 82 cm in total length. Five of the eight species spawn during the rising water season. Pseudoplatystoma species can grow to about 130 cm in total length and 100 Kg in weight and live until 30 years of age, depending upon the species. Biomass production and population dynamics of these catfishes have not yet been fully described. Their life-history characteristics indicate that they are periodic strategists with associated population recruitment dynamics. Population genetic patterning varies among Pseudoplatystoma species, with some degree of homing behavior and genetic differentiation among populations, indicating the need for management by applying the Management Unit and perhaps Evolutionary Significant Unit concepts. The main threats to the persistence of these catfishes are overfishing and alterations in and obstruction of river flow due to the construction of hydropower dams. After synthesizing existing information on species of the genus Pseudoplatystoma, we offer suggestions for future research to fill critical gaps in the knowledge of this group. 
    more » « less
  5. Co-management is increasingly recognized as an effective model for managing fisheries, but little information exists on whether co-management can produce effects in species other than the target species. Fishery co-management in the tropics, where fish diversity is high and fish catches tend to be multispecies, is prone to produce assemblage-wide effects via alterations in the food web and changes in the overall capture of non-target species. Here, we assessed the effects of co-management for the species Arapaima sp. in relation to the structure and composition of the overall fish assemblage in floodplain lakes of the central Amazon Basin. These floodplain lakes are managed under a system of zoning of fishing activities. We used data from surveys of six floodplain lakes, including two lakes of each of three categories (lakes where fishing is prohibited, limited-access lakes, and open fishing lakes). The surveys were carried out before and after implementation of co-management, through gillnet fishing. The study area was the lower Solimões River, in the Amazon Basin, Brazil. Statistical models showed significant changes in the composition and structure of the fish assemblages after the implementation of the co-management, regardless of the zoning category. Through regulation of gear use and fishing practices, co-management allowed the colonization of species that had not been present before, which lead to higher richness and consequently increased fish sizes, abundance and biomass. Species of sedentary habits, migrants of short and medium distances, with commercial importance benefited the most from co-management. In the results presented in temporal scale, it was possible to observe a potential spillover effect being provided by the lakes where fishing is prohibited (no-take zones) and those of limited access that benefited those open to fishing. Thus, co-management had positive effects in the structure and composition of fish assemblages in all lakes, regardless of zoning category. 
    more » « less
  6. Abstract Extensive floodplains throughout the Amazon basin support important ecosystem services and influence global water and carbon cycles. A recent change in the hydroclimatic regime of the region, with increased rainfall in the northern portions of the basin, has produced record-breaking high water levels on the Amazon River mainstem. Yet, the implications for the magnitude and duration of floodplain inundation across the basin remain unknown. Here we leverage state-of-the-art hydrological models, supported byin-situand remote sensing observations, to show that the maximum annual inundation extent along the central Amazon increased by 26% since 1980. We further reveal increased flood duration and greater connectivity among open water areas in multiple Amazon floodplain regions. These changes in the hydrological regime of the world’s largest river system have major implications for ecology and biogeochemistry, and require rapid adaptation by vulnerable populations living along Amazonian rivers. 
    more » « less